Metodi Matematici per l'Ingegneria. A.a. 2009-2010, sessione estiva, II appello

COGNOME e NOME			_ N. Matricola
Anno di Corso	_ Laurea in Ingegneria		
Si risolvano gli esercizi :	1 🔾 2 🔾	$3\bigcirc 4\bigcirc$	
ESERCIZIO N. 1. Usando il	metodo dei residui, si calcoli		
	$\int_0^{+\infty} \frac{x^2 dx}{x^4 + 4} .$		
RISULTATO			
CHOL CINEDATE			
SVOLGIMENTO			

ESERCIZIO N. 2. È data la funzione $f(x) = |\cos x|$ sull'intervallo $[-\pi, \pi]$.

(i)) Se 1	ne deter	mini lo	sviluppo	in	serie	di	Fourier.

 $\left(ii\right)$ Si dica, giustificando l'affermazione, se la convergenza è puntuale o uniforme.

(iii) Si valuti la serie in x=0 e se ne deduca la somma della serie numerica $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2-1}$.

COGNOME e NOME	N. Matricola
ESERCIZIO N.3. Si calcoli l'antitrasformata di antitrasformate di $\hat{f}'(\xi)$ e di $\hat{f}(3\xi)$.	Fourier di $\hat{f}(\xi) = e^{-\xi^2}$. Si valutino di conseguenza le
RISULTATO	
SVOLGIMENTO	

4 Università di Trieste – Facoltà d'Ingegneria. Trieste, 21 giugno 2010

ESERCIZIO N. 4. È data l'equazione differenziale lineare y'''+4y'=f(t). Si determini (i) la risposta impulsiva h(t), cioè relativa a $f(t)=\delta(t)$ (dove $\delta(t)$ è la delta di Dirac), (ii) la risposta forzata con condizioni iniziali nulle relativa a f(t)=-3u(t) (dove u(t) è la funzione gradino).

RISULTATO			
SVOLGIMENTO			
	·	 · · · · · · · · · · · · · · · · · · ·	